Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots
نویسندگان
چکیده
The effect of heavy metals on plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber (Cucumis sativus) roots was studied. The aim of this work was to explain the mechanism of modification of the PM H(+)-ATPase activity in plants subjected to heavy metals. Plants were treated with 10 μM Cd or Cu for 6 d. After 3 d exposure to the heavy metals, some of the plants were transferred to control conditions for a further 3 d (3/3 plants). The activity of PM H(+)-ATPase was found to be increased in plants treated with heavy metals. The highest activity measured as proton transport was observed in 3/3 plants. Estimation of transcript levels of C. sativus PM H(+)-ATPase in roots indicated that the action of Cd, but not Cu, affected the gene expression level. Transcript levels of C. sativus PM H(+)-ATPase (CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9) genes increased in roots treated with Cd. Moreover, Western blot analysis with antibody against phosphothreonine and 14-3-3 protein indicated that increased activity of PM H(+)-ATPase under heavy-metal stress resulted from phosphorylation of the enzyme. It was found that Cu markedly increased the activity of catalase and ascorbate peroxidase and reduced the level of H(2)O(2) in cucumber roots. In contrast, Cd did not affect these parameters. These results indicate that Cd and Cu can, in different ways, lead to modification of PM H(+)-ATPase activity. Additionally, it was observed that treatment of plants with heavy metals led to an increased level of heat-shock proteins in the tissues. This suggests that the plants had started adaptive processes to survive adverse conditions, and increased PM H(+)-ATPase activity could further enhance the repair processes in heavy-metal-stressed plants.
منابع مشابه
Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots
The effect of heavy metals on the modification of plasma membrane H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. In plants stressed for 2 h with 10 microM or 100 microM Cd, Cu or Ni the hydrolytic as well as the transporting activity of H(+)-ATPase in the plasma membranes of root cells was decreased. Transcript levels of Cucumis sativus plasma membrane H(+)-ATPase in roots tr...
متن کاملThe effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucu...
متن کاملUp-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress
Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...
متن کاملCadmium stress consolation in melatonin supplemented Cucumis sativus through modulation of antioxidative defense system
Current studies elucidate the metal stress attenuation potential of melatonin in Cucumis sativus seedlings growing in cadmium contaminated conditions. Melatonin is an indoleamine molecule, capable of ameliorating environmental stresses and regulate plant growth. Seeds of C. sativus were immersed in different levels of melatonin and grown under cadmium stress for 15 days. Cadmi...
متن کاملRapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport.
Water transport across root systems of young cucumber (Cucumis sativus L.) seedlings was measured following exposure to low temperature (LT, 8-13 degrees C) for varying periods of time. In addition, the amount of water transported through the stems was evaluated using a heat-balance sap-flow gauge. Following LT treatment, hydrogen peroxide was localized cytochemically in root tissue by the oxid...
متن کامل